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Your scientists were so preoccupied with whether
they could, they didn’t stop to think if they should.

Abstract

We present the submissions of our team to the
Unconstrained and LLM tracks of the Compu-
tational Models of Reference, Anaphora and
Coreference (CRAC2025) shared task, where
we ended respectively in the fifth and the first
place, but nevertheless with similar scores: av-
erage CoNLL-F1 scores of 61.57 and 62.96 on
the test set, but with very large differences in
computational cost. Indeed, the classical pair-
wise resolution system submitted to the Uncon-
strained track obtained similar performance but
with less than 10% of the computational cost.
Reflecting on this fact, we point out problems
that we ran into using generative Al to perform
coreference resolution. We explain how the
framework of text generation stands in the way
of a reliable text-global coreference represen-
tation. Nonetheless, we realize there are many
potential improvements of our LLM-system; we
discuss them at the end of this article.

1 Coreference Resolution

Coreference resolution, the task of identifying and
grouping textual linguistic expressions (mentions)
that refer to the same entity, has been studied since
the 1970s, beginning with rule-based systems for
pronouns (Winograd, 1972; Hirst, 1981). The Mes-
sage Understanding Conference (MUC) initiated a
standardised framework for a coreference resolu-
tion shared task with the MUC-6 challenge (Gr-
ishman and Sundheim, 1995). Data-driven ma-
chine learning methods appeared with the avail-
ability of annotated corpora, initially in English.
Subsequently, detection systems using statistical
classifiers and pairs of mentions were developed
(Soon et al., 2001), then mention-ranking systems
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like Denis and Baldridge (2008), usually in two
stages: mention detection then coreference resolu-
tion. End-to-end global models later emerged and
were evaluated in the CoNLL shared tasks (Prad-
han et al., 2011, 2012). The arrival of deep neural
models marked a turning point for the coreference
resolution with models often inspired by Lee et al.
(2017) later being replaced by BERT-based models
(Joshi et al., 2019) and encoder-decoder architec-
tures (Raffel et al., 2020), all contributing to im-
provements on benchmark datasets (Porada et al.,
2024). In recent years, solutions based on seq2seq
models (Zhang et al., 2023) and generative LLMs
(Zhu et al., 2025) have also been proposed. These
have been praised for their performance, while also
revealing limitations (Gan et al., 2024); prompting
reflection on the relevance of using such approaches
for coreference resolution.

2 CRAC: Task Description and Corpora

The CRAC shared task 2025 is part of a series of
annual challenges since 2016

In 2024, the detection of zero mentions was
added to the task® as were 4 new datasets (ancient
Greek, Old Church Slavonic, Ancient Hebrew and
English litBank) (Novék et al., 2024). CorPipe 24
(Straka, 2024), the winning entry in 2024, used a
pretrained language encoder model with two vari-
ants: a two stages model (mentions detection then
coreference resolution) and a single stage model.

Since 2025, the task corpus is based on CorefUD
1.3. (Novék et al., 2025) and contains 22 datasets for
17 languages, including for the first time ANCOR
(Mugzerelle et al., 2011), a French spoken language
corpus. In addition to the Unconstrained track, a
new LLM track was introduced this year, which
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focuses on using only large language models to
resolve coreference, via prompting, fine-tuning, or
in-context learning.

The Universal Anaphora corpus (which is the
source corpus for the CRAC task) brings together in-
dependently created corpora in different languages.
The different annotation schemes (when available)
indicate that the concept of coreference can in-
clude various phenomena depending on each cor-
pus. Indeed, some corpora contain annotations for
all the referring expressions, while some others in-
clude selected expressions only, such as the English-
LitBank corpus, which is annotated in coreferences
only for a subset of entity types (Bamman, 2020).
Despite efforts to standardise the format, some phe-
nomena are represented differently in several lan-
guages. For example, zero mentions are generally
represented by adding empty nodes to the UD trees,
such as for the Spanish Ancora (Taulé et al., 2008).
Yet, in the French Democrat corpus (Landragin,
2016), zero subjects are annotated on the verb®.

3 System Descriptions and Results

Our team participated in both the Unconstrained
and the LLM tracks submitting results for two en-
tirely different systems. In this section, we describe
the two approaches.

3.1 Unconstrained: Mention-Pair System
3.1.1 Architecture

The baseline system used in the Unconstrained track
is a mention-pair based multi-stage coreference res-
olution system adapted from the existing Propp
processing pipeline.5

As a first step, it extracts contextualized token
embeddings using a frozen multilingual pretrained
transformer encoder (mt5-x1°), applying overlap-
ping sliding windows to capture maximum context
and averaging embeddings across overlaps.

Mention spans are identified using stacked
BiLSTM-CRF models trained to predict nested
BIOES tags (Ratinov and Roth, 2009) at the sen-
tence level. A separate BILSTM model is used to
identify head tokens for zero mentions.

Mentions are encoded using either the head to-
ken (for zero mentions) or the average of the first
and last token embeddings (for multi-token spans).
Mention-pair representations are the concatenation

*A choice partly motivated by the annotation tool.
Shttps://github.com/lattice-8094/propp
https://huggingface.co/google/mt5-x1

of the embeddings of two mentions with a rich set
of linguistic and positional features, and are scored
using a feedforward neural network.

To reduce complexity, the number of antecedent
candidates is limited to 80 per mention. Clus-
ters are formed using a highest-ranked-antecedent
strategy and refined via transitive closure. Global
decisions are improved through leveraging local
high-confidence non-coreference links to avoid er-
roneous later merges.

3.1.2 Training and Computational Resources

Training our unconstrained system involves three
main modules: mention detection, zero mention
head detection, and coreference resolution. All
components rely on word-level embeddings gen-
erated by the frozen encoder.’

* Embedding Stage. We use the mt5-x1 model
to extract contextualized embeddings for all to-
kens in the training and development datasets.
The embedding model alone requires approx-
imately 7.6 GiB of GPU memory. Process-
ing all 12,187 documents (training + minidev)
takes 55 minutes®.

* Mention Detection Stage. The mention de-
tection module is trained separately for each
nesting level using the precomputed embed-
dings. The best models were obtained at epoch
23 (~4h46) for nested level 0 and epoch 21
(~4h32) for nested level 1, with a peak mem-
ory usage of 3.8 GiB.

* Zero Mention Head Detection. Trained simi-
larly to the mention detection module, the best
model was obtained after 24 epochs (~2h36),
with a peak memory usage of 1.7 GiB.

* Coreference Resolution. The coreference
resolution module is trained on all mention
pairs using a batch size of 16,000 pairs per
batch. The best model was obtained after 25
epochs (~3h57), with a peak memory usage of
1.8 GiB.

In the best-case scenario, the different modules
are trained in parallel, so the total training time for
the entire pipeline corresponds to the embedding

"More details about hyperparameters used for training each
components can be found in the Appendix A.

8 All experiments for the unconstrained track are performed
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time plus the duration of the longest individual mod-
ule, resulting in a total of under 6 hours. Due to the
size of the pretrained model used, the embedding
step remains the most memory-intensive part of the
pipeline and ultimately determines the minimum
required GPU size (~8 GiB in our case).

Inference on the test set takes approximately 16
minutes, with peak GPU memory usage of 7.5 GiB.
As with training, the embedding remains the main
bottleneck, meaning that coreference resolution
with this pipeline can be performed on any GPU
capable of holding the embedding model.

3.1.3 Unconstrained Track Results

Despite its relatively simple design, our system
achieves substantial improvements over the CRAC-
2025 provided baseline (Table 1). On average, it
yields a 5.56-point absolute gain in CoNLL F1-
score across the test corpora. These gains are consis-
tent across most languages, with particularly strong
improvements observed on lower-resource corpora
such as grc_proiel (+22.8), hbo_ptnk (+27.8), and
cu_proiel (+12.8). This demonstrates the system’s
robustness and its capacity to generalize effectively
across diverse linguistic settings.

Corpus CRAC-coref GLaRef
ca_ancora 68.01 68.06
cs_pcedt 56.94 61.68
cs_pdt 62.96 66.59
de_potsdamcc 55.70 61.18
en_gum 61.71 61.86
es_ancora 70.52 69.09
fr_democrat 54.99 66.13
hu_szegedkoref 54.54 60.08
It_lcc 65.35 57.60
pl_pcc 66.55 67.98
ru_rucor 67.59 71.45
hu_korkor 43.17 50.87
no_bokmaalnarc 62.45 67.09
no_nynorsknarc 63.00 66.28
tr_itcc 45.92 44.28
cu_proiel 26.33 39.10
en_litbank 65.96 69.96
gre_proiel 28.54 51.34
hbo_ptnk 31.04 58.80
fr_ancor 63.77 65.11
hi_hdt 66.85 69.51
ko_ecmt 50.32 60.57
Average 56.01 61.57

Table 1: Test results for the Unconstrained track com-
pared to the provided baseline (CRAC-coref).

Our system, adapted from the Propp architecture,
follows a modular pipeline in which each stage de-
pends on the previous one. This design introduces
a key limitation: error propagation. The mention
detection module plays a critical role, as errors at
this stage directly affect downstream components
such as mention pairing and clustering.

A notable challenge arises in datasets where sin-
gleton mentions (i.e., mentions not involved in any
coreference chain) are not annotated. In such cases,
the mention detector is trained only on spans that
are part of coreference chains, resulting in an in-
complete learning signal. This weakens its abil-
ity to identify valid mentions in general, particu-
larly when the coreference resolution component
depends entirely on the output of this detector.

This problem is further compounded by incon-
sistent annotation guidelines across datasets. As
mentioned in Section 2, some corpora provide ex-
haustive mention annotations, while others are more
selective. Such inconsistencies make it difficult
for the system to generalize across languages and
domains, and can lead to performance drops on
datasets with different annotation guidelines.

3.2 LLM Track: Fine-tuning Gemma 3

For the LLM track, we developed two models based
on fine-tuning of the Gemma-3-12B-it model us-
ing quantization and one single LoRA (Low-Rank
Adaptation) (Biderman et al., 2024) adapter for all
corpora. We proceeded to peft (parameter-efficient
fine-tuning) with 4-bit NormalFloat quantization
using QLora (Dettmers et al., 2024). The choice for
the Gemma model was motivated by participation
of members of our team in the shared task for Multi-
lingual Grammatical Error Correction (MultiGEC-
2025) (Masciolini et al., 2025), where they experi-
enced particular problems with Llama 3 for under-
resourced languages, in particular Icelandic and
Slovene (Seminck et al., 2025). The task was won
by a system build on Gemma 2 (Staruch, 2025),
which is known to be a reliable multilingual model.
Therefore, we decided to work with Gemma models
for the current shared task.

We used the text2text-coref tool® provided by
the CRAC organizers to transform the CoNLL
data into a plain text format with in-text annota-
tions and also to transform the system’s output
in plain-text back to CoNLL format. We pro-
ceeded to two distinct fine-tunings: a context-

*https://github.com/ondfa/text2text-coref
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free model and a context-aware model. Our sys-
tems can be found on https://github.com/
lattice-8094/GLaRef-CRAC25-LLM-Track.

3.2.1 Context-free Model

This model has the simplest design imaginable for
coreference resolution using LLMs. We model the
problem as just an annotation of coreference of
the text: we give the whole text unannotated as an
input, and the gold annotated text in the plain-text
format as an output. The text is treated as a whole
and there is no modelling of context. The prompt
is given in (1). We experimented with different
prompts, also leveraging ChatGPT-40 to enhance
the prompt and give detailed instructions of the
annotation schema. But in preliminary experiments,
it turned out that a shorter prompt led to better
performances and that the annotation schema can
be learned implicitly during the fine-tuning of the
model. Therefore, we kept a small prompt that is
language agnostic.

) You are a linguist, expert in anaphora and
coreference resolution. You have to anno-
tate in the text which nouns, pronouns and
other linguistic expressions refer to the same
entity. Do only insert annotations. Do not
insert extra linguistic material, nor punctu-
ation markers and do not delete elements
from the input texts.

Gemma 3 models can take up to 128K input tokens,
so there is theoretically no problem of input length.

Our model was trained for 10 epochs, using batch
size of one, for bigger batch sizes, the code threw
an out of memory error. The training lasted about
3 days on two Nvidia RTX 6000 Ada Generation
GPUs, featuring each 48 GB of memory capacity.

In Table 2, we can see that the results differ sub-
stantially across corpora. Whereas for some lan-
guages we observe scores above 70 points, for oth-
ers the system’s performance is poor. The main
reason for this is the length of the texts per corpus.
Despite the promise of handling up to 128K tokens
of input, we soon realized that Gemma 3 was not
capable of handling long texts properly, at least for
this task, but it has been demonstrated for other
tasks as well that output tends to degrade for longer
texts, even if the maximum input length is respected
(Levy et al., 2024; Liu et al., 2024). The system
diverges from the original text when it is too long,
for example by producing repetitive text (cycles), a
well known problem of generative models (Fu et al.,

2021; Ildiz et al., 2024). When the original text is
not present anymore, it is impossible to gain points
on in-text coreference resolution annotation. But
what exactly a long text is depends on the language
and the model’s knowledge of the language. That
has to do with the system’s tokenizer. Tokens of
under-resourced languages tend to be smaller than
the ones of well-represented ones. This problem
led us to the development of a second model.

3.2.2 Context-aware Model

The second fine-tuning splits the data into chunks
of 8 sentences at a time. In the prompt, the most
recent context (500 characters) that the model has
already annotated is given, in order to preserve the
coreference chains that were found earlier in the
text.

If the chunk of sentences is the beginning of the
text, the previous context is empty. In Example (2),
we can see that the prompt is almost the same as
the one of the Context-free Model.

(2) You are a linguist, expert in anaphora
and coreference resolution. Based on the
previous context, you have to annotate in
the new sentence which nouns, pronouns
and other linguistic expressions refer to the
same entity.

Previous context: {gold_previous_context}

Do only insert annotations. Do not insert
extra linguistic material, nor punctuation
markers and do not delete elements from
the input texts.

Before deciding to train a model with this context
size, we experimented by giving it the entire context
annotated thus far. It led to a disastrously bad result.
Inspecting manually the output, it seems that the
LLM does not ‘understand’ prompts that are too
long. If there is already a long context that has been
annotated, the LLM can no more make sense even
of the task. We thus strictly restrained the given
context to 500 characters (we choose characters in
order to keep a similar context length across dif-
ferent languages in the corpora as token length is
highly variable).

This model was trained on the same hardware
as the Context-free model, but only on 3 epochs
(mostly motivated by limited time and an increased
number of training examples dues to cutting up long
texts into chunks of 8 sentences). Training lasted
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about two days.

First, we tested the context-aware model by pre-
processing the development and test datasets the
same way as the training data (chunks of 8 sentences
and a context of 500 characters). Again, the results
can be found in Table 2.

What we first observe is that there are some
‘FAIL’ results. There are two types of FAIL:

(a) The system cannot predict the corpus due to
“Torch Dynamo Hit Recompile Limit” Errors.

(b) The system has produced output that is incom-
patible with the text2text-coref toolkit, which
prevents it from producing a CoNLL file from
a plain-text output of the model.

The first problem is caused by the on the fly con-
struction of data to predict, which leads to recom-
pilation of the NN graph. As every chunk is ac-
companied by the most recent annotated context,
the model has to base each prompt on its previous
output. This leads to prediction data that is unstable
and incompatible with the Torch library (or at least
disfavored by it). Even though we found after the
deadline of this shared task that there is a parameter
that can be changed to enlarge the capacity of the
prompt cache (which would increase the tolerance
of the system to changing the prompt), it would
have slowed down the system even more, meaning
that prediction times would even be higher than the
1,5 days it takes the system already to predict the
test set. Another option to solve this problem in
the future could be to create fixed-sized prompts at
the subword level, using pruning or padding when
necessary, to avoid recompilation.

The second problem can undoubtedly be solved
by working on the transformation scripts. We
solved a small part by searching for and deleting in-
valid hash-tag sequences. For example, in en_gum,
the model often generated sequences of “##”, which
causes errors when executing the text2text-coref
tool. Unfortunately, we did not have enough time
to address all the text2text-coref related issues and
hence, there are some corpora that we did not man-
age to predict. But in the end, our context-aware
approach seems to solve the problem of long texts.
The performance increases significantly for the ma-
jority corpora that we managed to process.

For some corpora on which the context-free
model obtained good results, the context-aware
model did not manage to improve the scores (for
example ca_ancora or es_ancora). We noticed that

these corpora feature rather short texts and our con-
clusion was that the 500 characters context given
in the prompt might be too short. We therefore
wanted to develop a new model that had a larger
context. We also wanted to address the problem of
the torch dynamo recompilation limit by making
less requests by enlarging the chunks.

As time fell short, we decided to use the context-
aware model trained on contexts of 500 characters
and chunks of 8 sentences but with different predic-
tion parameters without retraining. We predicted
chunks of 10 sentences giving 700 characters of
context. The results can be found in Table 2.

We see that for most corpora, this run yielded the
best results and we got a number of FAILs that is
much lower. However, there are corpora perform-
ing best in the 8sent_500char setting and even two
corpora where the context-free model is the best.
This indicates that the trade-off between smaller
texts to predict (thanks to chunking) and having
only access to the most recent context is different
for each corpus, depending on the LLMs knowl-
edge of the language, and the size of the texts. It
seems that each corpus would have its own optimal
parameters.

Our final submission, combined best scores of all
the LLM-predictions, leading to an average score
of 62.96.

4 Discussion

Even though our LLM-approach yielded the highest
scores in the LLM track (with only one point ahead
of the second best submission), performances of
systems in the unconstrained track cannot be ig-
nored. Indeed, when we just compare our two sub-
missions (mention-pair and Gemma 3 fine-tuning),
we have to conclude that performance is very sim-
ilar. And that is without taking into account the
fact that the winner of the unconstrained track, the
corpipe-ensemble system, largely encompasses our
endeavours with an average score of 75.84. So, an
important question that needs to be asked is: is
it worth the trouble to use LL.Ms for coreference
resolution? After all, their use is very costly in com-
putation resources. For example, the training time
for our two submissions differs significantly: only 6
hours for the classic model versus 2 or 3 days for the
LLM-based system. The gap is even more striking
at inference time, where the unconstrained system
requires approximately 16 minutes to process the
test-set, compared to about a day and half for the



Corpus C-F 8s_500c 10s_700c
ca_ancora 71.83 70.44 73.45
cs_pcedt 53.39 64.47 65.12
cs_pdt 70.13 FAIL-a 71.33
cu_proiel 8.92 57.22 58.25
de_potsdamcc 58.75 FAIL-b 59.60
en_gum 4434  FAIL-a 58.73
en_litbank 44.00 64.70 69.01
es_ancora 74.43 71.72 72.61
fr_ancor 14.40 64.73 66.74
fr_democrat 16.85 60.43 FAIL-a
grc_proiel 13.68 65.75 65.16
hi_hdtb 56.36 51.64 52.74
hbo_ptnk 1.00  FAIL-b 43.96
hu_korkor 46.39 52.53 52.46
hu_szegedkoref  56.42 56.41 59.82
ko_ecmt 60.52 61.09 63.04
It_lcc 56.38 62.55 62.28
no_bokmaalnarc 57.40 64.14 64.74
no_nynorsknarc  61.63 61.60 FAIL-a
pl_pcc 70.81 72.21 72.55
ru_rucor 65.40 68.26 68.79
tr_itcc 6.08 51.92 56.23
Average 47.85 58.91 62.67

Table 2: CoNLL F1-scores of the LLM track on the test
set. C-F: Context-free. Xs_Yc: X sentences, Y char-
acters. FAIL-a: Torch Dynamo Recompilation Limit
Error. FAIL-b: Text2text-coref Tool Error.

LLM-based approach. This is a substantial differ-
ence for a performance that remains comparable to
that of a traditional mention-pair system.

There is a lot of room for improvement in the de-
sign of our context-aware model. In the first place
by optimizing the context size, the length of the
chunks, pre-treatment of prompts to avoid recompi-
lation problems, and the machine learning parame-
ters —which would undoubtedly allow us to gain
a number of extra points in performance— and in
the second place by design modifications which we
will discuss broadly in Section 5. But according
to us, one of the core problems of using LLMs for
coreference resolution is that it asks to transform
coreference resolution into a text generation task. In
the remainder of this section we will explain what
are the fundamental problems of doing so.

When used for coreference resolution in the plain-
text format, LLMs are optimized to perform anno-
tation. So in fact, our context-aware model handles
coreference as an annotation problem, that should
be handled as a text generation problem. Although

using LL.Ms for annotation tasks is commonly done
(Tan et al., 2024), conceptually it has important
consequences when dealing with coreference.

Firstly, it defines coreference resolution neces-
sarily as an incremental task: chunks are annotated
in the order of the text and this leads inevitably in
making only local decisions. Even if, from a cog-
nitive point of view of coreference resolution, it
seems reasonable to treat coreference as incremen-
tal (Seminck, 2018), many coreference systems are
in fact not incremental, for example our pair-wise
system performs resolution based on highest scor-
ing mention-pair clustering, instead of incremental
clustering in the order of the text.

As aresult, it takes away the abstract representa-
tion of coreference chains, by providing only local
annotations on word levels in text. The text-global
modeling of coreference is at best only implicitly
present, but in the setting of our context-aware
model, more likely, absent. This led to annoying
mistakes in long text. What can happen is that when
a context is presented with entities numbered for ex-
ample ‘51°, ‘67" and ‘98’, the system will use lower
numbers, starting again from ‘1’ to annotate new
coreference chains. Although we could imagine
simple ways to prevent this behaviour (for example
by explicitly stating in the prompt that it is forbid-
den to restart numbering from ‘1’), it would be
interesting to think about a way to make the system
aware of the coreference annotation of the entire
text, without giving the entire annotated preceding
context.

Lastly, we would like to point out the problem
of transforming coreference resolution into a text
generation problem. The objects we have to deal
with are necessarily string variables and only string
variables. Of course, this could be seen as a general
problem for using generative Al for any scientific
problem. Coreference resolution is particularly im-
pacted by the previous problem: how to represent a
global and abstract presentation of the coreference
chains using only a single string variable?

Even though the learning power of LLMs is im-
pressive and one can try to insert abstract represen-
tations into the prompt to be handled, the way the
LLM treats this information is a black box. For
the LLM this information is part of the string, just
as both the original text and the text annotations:
there is no actual distinction between these things.
There is no guarantee that from the output, the orig-
inal text, readable annotations and abstract global
coreference chain annotations can be recovered. Of



course, performance could be increased by enhanc-
ing the post-hoc scripts that parse and align the
original text with the LLM-output by foreseeing
more unwanted scenarios and creating patch-work
solutions for them. But it does not change the prob-
lem fundamentally, we still have no guarantee of
stability of our research objects.

Moreover, the larger the amount of additional
information we may want to inject, treat with the
LLM and then recover from the output, the lower
the chances we actually succeed, as the probabil-
ity of mixing up information increases. The LLM
framework puts us out of control of the objects we
want to calculate and manipulate. This is true for
many uses of LLMs, stretching far beyond the prob-
lem of coreference. But we have to reflect on the
question whether we can and want to accept it.

5 Future Work

Despite our conclusion that generative large lan-
guage models are not easy to use to model corefer-
ence, participating in the shared task has given us a
lot of ideas about how we could enhance our contri-
bution next year. Even though we are not convinced
that putting into practice these solutions would take
away our reservations about the unsuitedness of
text generation for coreference resolution, we are
confident that they will enable us to increase signif-
icantly our scores. We will discuss these ideas and
hope that we (or other teams and researchers) could
benefit from them when developing new systems.

5.1 Improving Modelling of Coreference

Currently, in the context-aware model, as texts are
split into chunks, the model never has access to the
entire representation of coreference, as it is only
implicitly present as the previously annotated most
recent context. We could try to enhance the model
by making it explicitly state all the clusters con-
structed so far and feed it as additional information
into the prompt. Then, after annotation, extract the
newly formed clusters and re-build the global coref-
erence annotation. We expect this to help against
restarting numbering coreference clusters from ‘1°,
but foresee the possibility that this representation
might be unstable across the text, as it could be
corrupted during text generation.

A second idea to improve the global represen-
tation of coreference resolution is to model a text
in the memory of a chat conversation where each
chunk is user-turn followed by a model’s response.

Although correctly memorizing very long conver-
sations is still a challenge for LLMs (Maharana
et al., 2024), we would like to test their abilities to
keep track of global coreference chains using the
memory of the chat conversation.

5.2 Task-Specific Loss Function

The fine-tuning we performed for the LLM track
currently relies on the standard cross-entropy loss
used in language modeling, as implemented in the
gemma-3-12b-it model. However, this loss func-
tion is not well aligned with the specific needs of
coreference resolution; while maintaining overall
textual fidelity is important, assigning correct coref-
erence identifiers is absolutely critical.

In standard text generation, two outputs such as
[e111] and [e112] are nearly indistinguishable
in terms of loss. The model is only minimally pe-
nalized for generating a slightly incorrect entity ID,
even though such mistakes can drastically impact
the coreference resolution.

One direction for future work would be to imple-
ment a task-specific loss function. After generating
a batch of annotated text, we could compute a batch-
level coreference evaluation metric (e.g. CoNLL
F1-score). Though technically challenging, it could
make LLM fine-tuning more sensitive to the actual
goals of coreference resolution.

5.3 Improving the Input Format

The current plain-text format provided by the
CRAC shared task uses a custom inline annotation
style to mark entity spans and coreference chains.
For example:

Down the|[el Rabbit-Holelel] Alice|[e2] was beginning to
get very tired of sitting by her|[e2],[e3 sister|e3] on the|[e4
bank|e4] , and of having nothing to do : once or twice
she|[e2] had peeped into the book her|[e2],[e3 sister|e3]
was reading

We propose exploring alternative tagging
schemes better suited to LLMs, such as formats
inspired by markup languages like HTML or XML.
These clearly mark span boundaries with readable,
nested tags, explicitly marking start and end of
each span (<entity_start> </entity_end>):

Down <el>the Rabbit-Hole</el> <e2>Alice</e2> was
beginning to get very tired of sitting by <e3><e2>her</e2>
sister</e3> on <e4>the bank</e4> , and of having nothing
to do : once or twice <e2>she</e2> had peeped into the
book <e3><e2>her</e2> sister</e3> was reading



Such a structure might be easier to tokenize and
interpret by LLMs and may lead to better generaliza-
tion and consistency in generation-based settings.
Adopting this alternative would require adapting
the conversion scripts from CoNLL-U to plain text,
and from LLM outputs back to CoNLL-U. We be-
lieve this modification could help bridge the gap
between coreference annotation conventions and
LLM-friendly input formats, potentially improving
model performance.

We could also try, together with the newly devel-
oped task-specific loss function, to fine-tune directly
on the CoNLL-U format. This would limit error
propagation caused by the transformation scripts.

5.4 LLM-based Pair-Wise Resolver

To limit the undesirable effects of text generation
(loss of control on our study objects), we could split
the coreference resolution task into sub-problems
and come back to a pair-wise resolution system us-
ing LLMs. We would first use an LLM for mention
detection, and then another for pair-wise classifi-
cation, where pairs of mentions are classified as
coreferent or not, fine-tuning the LLM to produce
a binary response.

While this system would undoubtedly be com-
putationally extremely heavy, as it asks for tens
of thousands of calls to the LLM in order to per-
form pair-wise resolution, it would be an interest-
ing experiment to see whether performance on the
mention-detection and the pair-wise resolution in-
creases with respect to classical systems, such as
our mention-pair system. According to the results,
we could also consider to replace a given module by
an LLM-based system. If the LLM results are high
but very costly computationally, we could also use
it only for the more difficult cases of resolution. The
current pair-wise system outputs confidence scores
for its calculations, we could use the LLM-based
system only for low confidence scores.

5.5 Student Training of LLM with Oracles

We only have access to gold data in order to fine-
tune the coreference resolution systems. But, the
incremental setting imposed by the LLM puts us
in a situation where error propagation can be an
issue. Therefore, we could want to teach the LLM
to resolve coreference based on its previous predic-
tions even if they contain errors. However, learning
to predict the gold annotation given what has al-
ready been predicted (the context) can actually be
detrimental. For example, if due to early errors,

two chains have seen their indices swapped in the
context, trying to predict the original gold indices
is actually incoherent. To remedy this, we would
need to relabel the current chunk to replace gold
tags, given what has already been predicted in the
context. This is computationally very expensive,
likely NP-hard, given that the coreference metrics
consider the annotation of the whole text. We con-
sider to train oracles to predict good relabeling of
the gold data at a reasonable cost, inspired by works
done in syntactic parsing where oracles are trained
to predict sequences of transitions of a system that
reconstruct a parse tree (Coavoux and Crabbé, 2016;
Shen et al., 2021).

6 Conclusion

We fine-tuned the Gemma-3-12B-it model to per-
form coreference resolution in the LLM track of the
CRAC shared task and ended first. We found that
our approach was adaptable to all the languages of
the shared task, but that the systems were compu-
tationally very costly, especially compared to our
pair-wise coreference resolution system submitted
in the Unconstrained track of the CRAC shared task.
Analyzing our results, we come to the conclusion
that it is not obvious use generative LL.Ms for coref-
erence resolution. Coreference resolution being
a global discourse phenomenon, it is difficult to
model it as a text generation task. Notwithstanding
this fundamental problem, our work can be seen as
one of the first attempts to fit the problem resolu-
tion task in the framework of LLMs and provides
a rich ground for reflection on multiple areas of
improvement for future work.
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A Unconstrained Track Model
Architecture and Hyperparameters

A.1 Mention Detection Model
A.1.1 Architecture
* Locked Dropout (0.5) applied to embeddings

for regularization.

* Projection Layer: Highway network mapping
1024 — 2048 dimensions.

* BiLSTM Layer: Single bidirectional LSTM
(256 hidden units per direction).

* Linear Layer: Maps 512-dimensional BiLSTM
outputs to BIOES label scores.

* CRF Layer: Enforces structured consistency in
predictions.

A.1.2 Training Parameters
* Data Splitting: 85%/15% train-validation split.

* Batch Size: 16 sentences per batch.

* Optimization: Adam optimizer (Ir = 1.4 x 1074,
weight decay = 107°).

* Learning Rate Scheduling: ReducelLROn-
Plateau (factor = 0.5, patience = 2).

* Average Training Epochs: 22.

* Hardware: Trained on a single 48 GiB Nvidia
RTX 6000 Ada Generation GPU.

A.2 Coreference Resolution Model
A.2.1 Architecture

* Model Input: 2,063-dimensional vector, com-
posed of concatenated:

— CamemBERT embeddings: Maximum con-

text embeddings for both mentions (2 x 1,024

= 2,048 dimensions).

Mention Features (15 dimensions):

# Mention length.

* Position of the mention’s start token in the
sentence.

# Dependency relation of the mention’s head
(one-hot encoded).

Mention Pair Features (8 dimensions):

% Distance between mention IDs.

% Distance between start and end tokens of
mentions.

* Sentence and paragraph distance.

# Difference in nesting levels.

% Ratio of shared tokens between mentions.
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# Exact text match (binary).
# Exact match of mention heads (binary).
# Match of syntactic heads (binary).

* Hidden Layers:

— Three fully connected layers.

— 1,900 hidden units per layer with ReL.U activa-
tion.

— Dropout rate of 0.6 for regularization.
* Final Layer:

— Linear layer mapping from 1,900 dimensions
to a single scalar score.

— Output: Continuous value between 0 (not
coreferent) and 1 (coreferent).

A.3 Model Training
» Data Splitting: 85%/15% train-validation split.
 Batch Size: 16,000 mention-pairs per batch.

+ Optimization: Adam optimizer (Ir = 4 x 1074,
weight decay = 107°).

¢ Antecedent Candidates: 80 maximum.
¢ Antecedent Candidates:

* Hardware: Trained on a single 48 GiB Nvidia
RTX 6000 Ada Generation GPU.
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