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Shared Task Ressources

e CorefUD 1.3 Corpus

e 17 Languages
Ancient Greek, Biblical Hebrew, Catalan, Czech, English, French,
German, Hindi, Hungarian, Korean, Lithuanian, Norwegian, Old
Church Slavonic, Polish, Russian, Spanish, Turkish

e 22 Datasets
. Documents
L Sentences
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e Mention spans
e Zero mentions
e Clustering



Shared Task Evaluation
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LLM & Unconstrained Tracks

LLM Track “... primarily rely on large language models (LLMs)
through fine-tuning, prompting, or in-context learning. ”
Coreference Resolution ( Annotated
System L CoNLL-U
[ CoNLL-U
Coreference Resolution ( Annotated
System L CoNLL-U

. “... using any approach, including non-LLM or hybrid
Unconstrained Track methods, external tools, and model customization ”



Unconstrained Track

[ CoNLL-U

Coreference Resolution ( Annotated
System L CoNLL-U

. “... using any approach, including non-LLM or hybrid
Unconstrained Track methods, external tools, and model customization ”



Unconstrained Submission: Multistage Pipeline
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Unconstrained Submission: Multistage Pipeline
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Unconstrained Submission: Multistage Pipeline
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Unconstrained Submission: Multistage Pipeline
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Unconstrained Submission: Trained Modules
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Unconstrained Submission: Training Resources

GPU Training
Peak VRAM Time

Mentions spans
BiLSTM-CRF

3.8 GiB < 5 hours

Zero mentions head
BiLSTM Token Classifier

1.7 GiB

Mention-pairs
Scorer

1.7 GiB

Token
Embeddings

7.2 GiB < 5 hours
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Unconstrained Submission: Training Resources

GPU Training
Peak VRAM Time
Mentions spans : <
= BiLSTM-CRF 3.8 GiB S hours
Embedding .
Zero mentions head .

mrexd BiLSTM Token Classifier 1.7GiB

\\ Mention-pairs 1.7 GiB

Scorer

> 8 GIB 7.2 GiB < 5 hours

o <1 hour
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Unconstrained Submission: Resources

[ CoNLL-U

Multistage Pipeline

Unconstrained

( Annotated

Train

8 GiB 6 hours

Dev

8 GiB 16 minutes

L CoNLL-U

|
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Unconstrained Submission: Performance

[ CoNLL-U
Unconstrained ( Annotated
Multistage Pipeline | CoNLL-U
Train 8 GiB 6 hours CoNLL F1

Dev 8 GiB 16 minutes ~ 62.96



Comparison of Models
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90
85
80
o
70
65
60
29
50
45
40
35

CoNLL F1 vs Training Time (minidev set)

Training Time (hours)

CRAC Baseline
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LLM Submission

[ CoNLL-U }

LLM Track “... primarily rely on large language models (LLMs)
through fine-tuning, prompting, or in-context learning. ”

Coreference Resolution
System

( Annotated
L CoNLL-U
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LLM Submission: Provided Conversion Scripts

Annotated
CoNLL-U CoNLL-U
Provided Provided
CoNNL-U to Plaintext LLM Plaintext to CoNNL-U
Script Script

) Annotated
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LLM Strategies

In-context learning ?
Fine-tuning ?
Prompt tuning ?
Agentic systems ?
Open-weights VS Close-weights ?

LLM
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LLM Strategy: Fine-tuning

|

Pre-trained
LLM

Fine-tuning

Fine-tuned
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LLM Fine-tuning Details

|

Pre-trained

LLM

Fine-tuning
e 4-bit Quantization
e Low-Rank Adaptation (LoRa)

Fine-tuned
LLM
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Pre-trained LLM: Gemma-3 instruction-tuned (IT)

e Open weights
[ Gemma-3 }\o 128K token context
e 140 languages

)
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Gemma-3 Prompt Template

SYSTEM INSTRUCTION TEXT INPUT EXPECTED MODEL OUTPUT

<start_of_turn>user

You are a linguist, expert in anaphora and coreference resolution.

Annotate in the input sentences which nouns, pronouns and other expressions
refer to the same entity.

Do only insert annotations. Do not insert extra linguistic material, nor
punctuation markers and do not delete elements from the input texts.

Input: *PLAINTEXT*
<end_of_turn>

<start_of_turn>model
*COREFERENCE ANNOTATED PLAINTEXT*
<end_of_turn>
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Input format ?

SYSTEM INSTRUCTION TEXT INPUT EXPECTED MODEL OUTPUT

Input: *PLAINTEXT*
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Full Document Annotation

|

Full Document W

Plaintext

. Fine-tuned
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( Full Document
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Full Document Annotation: Model Size Impact

CoNLL-U Gemma-3-it Annotated
o 270m /1b/4b/12b/ 27b CoNLL-U
CoNNL-U ~QLloRa Plaintext
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Full Document Annotation: Model Size Impact
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Unconstrained > LLM Full Document

LLM Full Document
Gemma-3-12b-it

CoNLL F1
49.26
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Incremental Sentence Batch Annotation
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Incremental Sentence Batch Annotation
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Incremental Sentence Batch Annotation: Prompt Template

SYSTEM INSTRUCTION PREVIOUS CONTEXT TEXT INPUT EXPECTED MODEL OUTPUT

<start_of_turn>user

You are a linguist, expert in anaphora and coreference resolution.

Based on the previous context, annotate in the input sentences which
nouns, pronouns and other expressions refer to the same entity.

Do only insert annotations. Do not insert extra linguistic material, nor
punctuation markers and do not delete elements from the input texts.

Previous context: *ANNOTATED SENTENCES FROM PREVIOUS BATCHES*

Input: *PLAINTEXT SENTENCE BATCH=*
<end_of_turn>

<start_of_turn>model
*COREFERENCE ANNOTATED SENTENCE BATCH#*
<end_of_turn>



Incremental Sentence Batch Annotation
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Incremental Sentence Batch Annotation

Plaintext Fine-tuned
Document Gemma-3 \
| . Sentence Annotated Sentences
Split Batch for Context
How many sentences How much context ?

per batch ?



Annotation Strategies

How much
context ?

>

LLM Full Document
All sentences
No context

——

Length of text to annotate (sentences) How many sentences
per batch ?

Previous context ( words)




Annotation Strategies
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Space of Annotation Strategies

Full Document
All sentences
No context
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Space of Annotation Strategies: Exploratory Experiments

Incremental Sentence-by-Sentence
1 sentence per batch
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Space of Annotation Strategies: Selected Parameters
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LLM Incremental: Results

LLM Incremental
Gemma-3-12b-it

Annotated CoNLL F1
CoNLL-U 62.23

[ CoNLL-U

Annotated CoNLL F1
CoNLL-U 49 .26

IR

Annotated CoNLL F1
CoNLL-U 62.96




LLM Incremental: Best Model

LLM Incremental Annotated CoNLL F1
Gemma-3-12b-it CoNLL-U 62.23

Annotated CoNLL F1
CoNLL-U 62.96

Train 8 GiB 6 hours
Dev 8 GiB 16 minutes

[ CoNLL-U




LLM Incremental: Ressources

Train
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Comparison of Models
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Comparison: Best Unconstrained Single Model Solution

Unconstrained
90 Corpipe Single Model
85 Training Time: 22.5 hours
80 CoNLL F1: 75.69
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LLM Coreference Resolution: Perspectives

1. Model Size Increase
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Perspectives: Model Size Increase
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LLM Coreference Resolution: Perspectives

2. Annotated Entities Tracking
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Perspectives: Annotated Entities Tracking

SYSTEM INSTRUCTION PREVIOUS CONTEXT TEXT INPUT EXPECTED MODEL OUTPUT

Entity Tracker: "Alice's sister"[e1], "Alice"[e2], "The White Rabbit"[e3]



LLM Coreference Resolution: Perspectives

3. Plaintext Format Modification
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Perspectives: Plaintext Format Modification

Down the|[e1 Rabbit-Hole|e1] Alice|[e2] was beginning to get very tired of
sitting by her|[e2],[e3 sister|e3] on the |[e4 bank|e4] , and of having nothing
to do : once or twice she|[e2] had peeped into the book her|[e2],[e3 sister|e3]
was reading.

Down <e1>the Rabbit-Hole</e1> <e2>Alice</e2> was beginning to get very
tired of sitting by <e3><e2>her</e2> sister</e3> on <e4>the bank</e4> , and
of having nothing to do : once or twice <e2>she</e2> had peeped into
thebook <e3><e2>her</e2> sister</e3> was reading.

Alternative tagging scheme inspired by markup languages like HTML or XML that
tokenizers and LLMs might be more familiar with.
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Perspectives: Coreference ID Tracking

4. Other Suggestions ?
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Thank you

Antoine BOURGOIS
Lattice (CNRS — Ecole Normale Supérieure — Université Sorbonne Nouvelle), Paris, France
antoine.bourgois@ens.psl.eu






Additional Material: Space of Annotation Strategies

How much
context ? Incremental Sentence-by-Sentence
1 sentence per batch
A Maximum available context

How much context

do we need ? Full Document

All sentences
No context

—

Length of text to annotate (sentences) How many sentences
per batch ?

Previous context ( words)
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Additional Material: Distance to Last Coreferential Antecedent
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Additional Material: Incremental approach

PREVIOUS CONTEXT RAW TEXT INPUT EXPECTED MODEL OUTPUT

STEP 1

[None] CHAPTER I. Down the Rabbit-Hole Alice was beginning to get very tired of sitting by her
sister on the bank , and of having nothing to do : once or twice she had peeped into the book
her sister was reading , but it had no pictures or conversations in it , ' and what is the use
of a book , ' thought Alice ‘ without pictures or conversations ? '

l

Large Language Model

CHAPTER I. Down the|[el1 Rabbit-Hole|el1] Alice|[e2] was beginning to get very tired of sitting by

her|[e2],[e3 sister|e3] on the|[e4 bank|e4] , and of having nothing to do : once or twice
she|[e2] had peeped into the book her|[e2],[e3 sister|e3] was reading , but it had no pictures
or conversations in it , ‘ and what is the use of a book , ' thought Alice|[e2] ' without

pictures or conversations ? '’
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Additional Material: Incremental approach

PREVIOUS CONTEXT RAW TEXT INPUT EXPECTED MODEL OUTPUT

STEP 2

CHAPTER I. Down the|[el1 Rabbit-Hole|el] Alice|[e2] was beginning to get very tired of sitting by
her|[e2],[e3 sister|e3] on the|[e4 bank|e4] , and of having nothing to do : once or twice
she|[e2] had peeped into the book her|[e2],[e3 sister|e3] was reading , but it had no pictures
or conversations in it , ‘ and what is the use of a book , ' thought Alice|[e2] ‘' without

1

pictures or conversations ? So she was considering in her own mind ( as well as she could ,
for the hot day made her feel very sleepy and stupid ) , whether the pleasure of making a
daisy-chain would be worth the trouble of getting up and picking the daisies , when suddenly a
White Rabbit with pink eyes ran close by her .

Large Language Model

So she|[e2] was considering in her|[e2] own mind ( as well as she|[e2] could , for the hot day
made her|[e2] feel very sleepy and stupid ) , whether the pleasure of making a daisy-chain would
be worth the trouble of getting up and picking the daisies , when suddenly a|[e5 White Rabbit

with pink eyes|e5] ran close by her|[e2] -
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Additional Material: All experiments
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